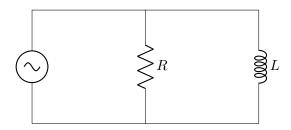
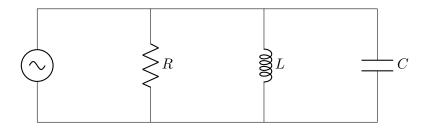

NAME:	Smildena #.
NAME:	STUDENT #:

(3 marks) In a a series RL circuit with $L=1.5H,\,f=400Hz,\,V_L=6.5V$ and $Z=8k\Omega$ determine

- The reactance X_L and the current I.
- The resistance R and the voltage V_R .
- The total voltage V_T .

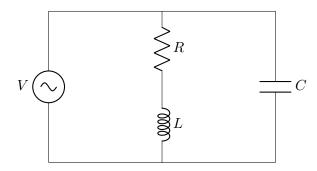

(4 marks) In a a series RLC circuit with $V=110\angle0^{\circ}V,\,R=1.2~k\Omega,\,L=0.5~H,\,C=150nF,$ and f=1.0~kHz determine

- The reactances X_C and X_L and the impedance Z.
- The current I in polar form.
- \bullet The voltages $V_R,\,V_L,\,V_C$ in polar form.
- The True power P.


(4 marks)

Consider a RL parallel circuit

with $R=8~k\Omega,~L=20~mH,~f=6.0~kHz$ and $I_L=5.5\angle-90^\circ~mA$. Determine I_T and Z in both polar and rectangular forms as well as the equivalent RL series circuit.


(4 marks) Consider a RLC parallel circuit

with $V=150 \angle 0^{\circ}V$, $R=6.2~k\Omega$, $X_C=8~k\Omega$ and $X_L=4~k\Omega$. Determine I_R,I_C,I_L,I_T and Z in both polar and rectangular forms as well the resistance and the reactance of the equivalent RC or RL series circuit.

(5 marks)

Consider the ac network

with $V=90V\angle 0^\circ$, $R=2.5k\Omega$, f=50kHz, L=5.5~mH and C=5nF. Determine all the currents and all the voltages as well as the total impedance in both polar and rectangular forms.