
DIFFERENTIAL EQUATIONS, H22, TEST 2

Name: Student number

(1) (3.5 marks) The coefficient matrix of the following system of differential equations
depends on a parameter α.
a) Determine the eigenvalues in terms of α.
b) Find the critical values of α where the qualitative nature of the phase portrait
for the system changes.
c) Draw qualitative phase portraits for this system for values of α taken in the
intervals outside of the critical points.

x′ =

(
2 −5
α −2

)
x.
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(2) (4.5 marks) The motion of a mechanical system driven by a periodic external force
can be modelled as a initial value problem

u′′ + ω2
0u = F cosωt, u(0) = 0, u′(0) = 0,

where F, ω0 and ω are constants and ω ̸= ω0.
a) Solve the initial value problem. The result should be a function u(t) with the
constants F, ω0, ω as parameters in the function.
b) Now let F = 1, ω0 = 1 and ω = 1.1. Substitute these values in your solution
u(t). Sketch the graph of u(t) clearly indicating the maximum value(s) on the graph
and the period if u(t) is periodic.
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(3) (4 marks) Solve the initial value problem x′(t) = Ax(t),

A =

(
1 1
−1 1

)
, x(0) =

(
−1
−2

)
.

Draw the phase portrait of this linear system of differential equations emphasizing
the particular trajectory selected by the initial conditions.
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(4) (4 marks) a) Find the solution of the initial value problem

x′ =

(
−2.5 1.5
−1.5 0.5

)
x, x(0) =

(
3
2

)
.

b) Draw a phase portrait of this system of DE’s emphasizing the trajectory
selected by the initial conditions.
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(5) (4 marks) Determine the matrix exponential eAt for the matrix A:

A =

(
5 −1
3 1

)
.

Next use this result to solve the initial value problem

x′1 = 5x1 − x2
x′2 = 3x1 + x2,

x1(0) = −2, x2(0) = 4.
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(6) (4 marks) Determine the solution of the initial value problem

x′ =

(
2 −3
1 −2

)
x+

(
e2t

1

)
, x(0) =

(
−1
0

)
.
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(7) (4 marks) Use Laplace transform to solve the initial value problem

y′′ − 2y′ + 5y = −8e−t, y(0) = 2, y′(0) = 12.
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(8) (4.5 marks) The current I in an LC series circuit is governed by the initial value
problem

I ′′(t) + 4I(t) = g(t), I(0) = 0, I ′(0) = 0,

where

g(t) =

 1 0 ≤ t < 1,
−1 1 ≤ t < 2,
0 2 ≤ t.

a) Determine the current as a function of time t.
b) Is the current a continuous function of time? Check I(t) for continuity at the

points t = 1 and t = 2 where the nonhomogeneous term is discontinuous.
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(9) (3.5 marks) Use the Laplace transform to solve the initial value problem

y′′ + 2y′ = δ(t− 1), y(0) = 0, y′(0) = 1


