DIFFERENTIAL EQUATIONS, H23, FINAL EXAMINATION

(1) (3 marks) Find the charge ¢(¢) on the capacitor in an LRC series circuit if L =
0.25H, R = 1092, C = 0.001F and the initial conditions are such that ¢(0) = 3C
and there is no current initially. Express the solution as a single trigonometric
function with a phase shift and sketch the graph. Is the circuit underdamped,
critically damped or overdamped?
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(2) (4 marks) A spring is stretched 6¢m by a force of 3N. A mass of 2kg is hung from
the spring and is also attached to a viscous damper.
i) What should be the value of the damping coefficient v so that the system is
critically damped?
ii) Assuming the system is critically damped determine the motion of the system
with initial conditions w(0) = 0 and «/(0) = 2¢m/s. Draw a graph of the solution.
iii) For a spring-mass system what happens to the ratio of the quasi frequency to
the natural frequency if the damping coefficient « changes in such a way that the
system is underdamped but approaches critical damping?
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(3) (4 marks) The motion of a mechanical system driven by a periodic external force
can be modelled as a initial value problem

u” + wu = Fysinvt, u(0) =0, u/(0) =0,

where Fp,w and v are constants and v # w. Solve the initial value problem. The
result should be a function w(t) with the constants Fy,w,~ as parameters in the
function.
Evaluate the limit
lim wu(t)

y—w
with the use of L'Hospitals Rule. In this limit what happens to the amplitude of
the oscillations for large ¢?7
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(4) (4 marks) Find the fundamental matrix ®(t) satisfying ®(0) = I for the following
system
o= =3yt
Yo = 2y1— 4y
Use this fundamental matrix to solve this system of DE’s with initial conditions
y1(0) = 1,52(0) = —1.
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(5) (4 marks) Determine the general solution of the nonhomogeneous system of DE’s
v, = —3y1+y2+3t
Yo = 2y1—dypte
Notice that the coefficient system is the same as in Problem 2, so you can reuse
the pertinent quantities computed there.
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(6) (4 marks) Solve the initial value problem

/
Yy = 3y1— 18y 0) = —1. w(0) = —1
yé — 2y1_9y2 ) yl( ) ) Z/2( ) :
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(7) (4 marks) Consider the system of DE’s depending on a parameter «

Y = 5y1+3ye

Yy = oy + 5y
a) Determine the critical values of a where the qualitative nature of the phase
portrait for the system changes.
b) The critical values split the real axis into intervals. Draw a phase portait for
the system for « in each of these intervals.
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(8) (3 marks) Use Laplace transform to solve the IVP
v +y =), y(0) =5,

where
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(9) (3 marks) Use Laplace transform to solve the IVP
y' + 3y = 13sin 2t, y(0) =6
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(10) (4 marks) Use Laplace transform to solve the IVP
y' +y = 20(t - 2m), y(0) =1, y'(0) =0

Next, sketch the graph at the solution. Are the solution, its first and second
derivatives continuous on [0,00)? List the functions which are discontinuous and
the points of discontinuity.



