DIFFERENTIAL EQUATIONS, CLASS EXERCISE 12

(1) The current I in an $L C$ series circuit is governed by the initial value problem

$$
I^{\prime \prime}(t)+4 I(t)=g(t), \quad I(0)=0, I^{\prime}(0)=0
$$

where

$$
g(t)=\left\{\begin{array}{rl}
1 & 0 \leq t<1 \\
-1 & 1 \leq t<2 \\
0 & 2 \leq t
\end{array}\right.
$$

Determine the current as a function of time t. Sketch the graph of the solution (use software).
(2) Laplace transform can also be used to solve systems of linear DE's. Consider the system

$$
\left\{\begin{aligned}
x^{\prime}-2 y & =4 t, & & x(0)=4 \\
y^{\prime}+2 y-4 x & =-4 t-2, & & y(0)=-5
\end{aligned}\right.
$$

Let $X(s)=\mathcal{L}\{x\}$ and $Y(s)=\mathcal{L}\{y\}$. Taking Laplace transform of both sides of the system we obtain

$$
\left\{\begin{aligned}
s X(s)-4-2 Y(s) & =\frac{4}{s^{2}} \\
s Y(s)+5+2 Y(s)-4 X(s) & =-\frac{4}{s^{2}}-\frac{2}{s}
\end{aligned}\right.
$$

Solve this algebraic linear system and then implement inverse Laplace transform to obtain $x(t)$ and $y(t)$.
(3) Using integration by parts, show that

$$
\int_{-\infty}^{\infty} f(t) \delta^{\prime}(t) d t=-f^{\prime}(0)
$$

Next argue that

$$
\int_{-\infty}^{\infty} f(t) \delta^{(n)}(t) d t=(-1)^{n} f^{(n)}(0)
$$

(4) Solve the IVP

$$
2 y^{\prime \prime}+y^{\prime}+2 y=\delta(t), \quad y(0)=0, y^{\prime}(0)=0
$$

Sketch the graph of the solution (use software).
(5) In an $L R C$ circuit with $L=1 H, R=8 \Omega$ and $C=1 / 15 F$, the capacitor initially carries a charge of $1 C$ and no currents are flowing. There is no external voltage source. At time $t=2 s$, a power surge instantaneously applied an impulse voltage of $4 \delta(t-2)$ into the system. Describe the charge of the capacitor over time. Sketch the graph (use software).

