DIFERENTIAL EQUATIONS, CLASS EXERCISE 8

(1) Compute the eigenvalues and the eigenvectors of the matrix A

$$
A=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 2 & 1
\end{array}\right)
$$

(2) Compute the eigenvalues and the eigenvectors of the matrix B

$$
B=\left(\begin{array}{cc}
1 & 2 \\
-1 & -1
\end{array}\right)
$$

(3) Solve the initial value problem $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$,

$$
A=\left(\begin{array}{cc}
-1.5 & 0.5 \\
1 & -1
\end{array}\right), \quad \mathbf{x}(0)=\binom{5}{4}
$$

Draw the phase portrait of this linear system of DE's emphasizing the particular trajectory selected by the initial conditions.
(4) a) Solve the initial value problem $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$,

$$
A=\left(\begin{array}{cc}
4 & -5 \\
-2 & 1
\end{array}\right), \quad \mathbf{x}(0)=\binom{8}{1}
$$

Draw the phase portrait of this linear system of DE's emphasizing the particular trajectory selected by the initial conditions.
(5) Determine the general solution of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$,

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

