DIFERENTIAL EQUATIONS, CLASS EXERCISE 9

(1) Solve the initial value problem $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$,

$$
A=\left(\begin{array}{cc}
-2 & -2.5 \\
10 & -2
\end{array}\right), \quad \mathbf{x}(0)=\binom{3}{3}
$$

Draw the phase portrait of this linear system of DE's emphasizing the particular trajectory selected by the initial conditions.
(2) Consider the two-mass, three-spring system drawn below.

Let $m_{1}=1, m_{2}=4 / 3, k_{1}=1, k_{2}=3$, and $k_{3}=4 / 3$.
a) Convert the dynamical equatins of this system to four first order DE's and then write them in the form $u^{\prime}=A u$.
b) Using software, find the eigenvalues and the eigenvectors of A.
c) Write down the general solution of the system.
d) Describe the four fundamental modes of vibration as four-vectors of functions and also in English.
e) For each fundamental mode draw graphs of the displacements u_{1} and u_{2} versus t on the same graph.
(3) The coefficient matrix of the following system of differential equations depends on a parameter α.
a) Determine the eigenvalues in terms of α.
b) Find the critical values of α where the qualitative nature of the phase portrait for the system changes.
c) Draw qualitative phase portraits for this system for α at the critical points and also for values of α taken in the intervals between the critical points.

$$
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
3 & \alpha \\
-6 & -4
\end{array}\right) \mathbf{x}
$$

Hint: Do not miss the critical value where one of the eigenvalues becomes zero.
(4) Consider the system of linear DE's

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left(\begin{array}{ll}
1 & -1 \\
2 & -2
\end{array}\right)
$$

i) Compute the fundamental matrix $\Phi(t)=e^{A t}$.
ii) Solve this system with the initial conditions

$$
\mathbf{x}(0)=\binom{-1}{3}
$$

