Diff $4 q$ - $1+22$ - Complex eigenvalues
Consider the linear homogeneous system of $D E^{\prime} s \quad X^{\prime}=A X$. "ven when the matrix A is real, its eigenvalves/eigenvectors could be curplex.
ex: $\vec{x}^{\prime}=\left(\begin{array}{cc}-1 / 2 & 1 \\ -1 & -1 / 2\end{array}\right) \vec{x}$
The eigenvalve-eigenvector pairs are

$$
\lambda_{1}=-\frac{1}{2}+i, \quad X_{1}=\binom{1}{i} ; \quad \lambda_{2}=-\frac{1}{2}-i, \quad \bar{X}_{2}=\binom{1}{-i}
$$

Fundamental set of solutims is

$$
\vec{x}^{(1)}(t)=e^{(-1 / 2+i) t}\binom{1}{i} ; \quad \vec{x}^{(2)}(t)=e^{(-1 / 2-i) t}\binom{1}{-i}
$$

Notice Rat

$$
\begin{aligned}
\vec{x}^{\prime(1)}(t) & =e^{(-1 / 2+i) t}\binom{1}{i}=e^{-t / 2}(\cos t+i \sin t)\binom{1}{i} \\
\Rightarrow \vec{x}(1)(t) & =e^{-t / 2}\binom{\cos t}{-\sin t}+i e^{-t / 2}\binom{\sin t}{\cos t}
\end{aligned}
$$

similarly,

$$
\begin{aligned}
& i \operatorname{larly} \mid \\
& \vec{x}
\end{aligned}
$$

We can form a new fundamental set of solutims consisting of the real and imaginary parts of $\vec{x}^{(1)}(t)$ (and $\vec{x}^{(2)}(t)$):

$$
\vec{u}(t)=e^{-t / 2}\binom{\cos t}{-\sin t}, \quad \vec{v}(t)=e^{-t / 2}\binom{\sin t}{\cos t}
$$

Let's check the Wromshian:

$$
W(\vec{u}, \vec{v})=\left|\begin{array}{ll}
e^{-t / 2} \cos t & e^{-t / 2} \sin t \\
-e^{t / 2} \sin t & e^{-t / 2} \cos t
\end{array}\right|=e^{-t} \neq 0 \text {. }
$$

The phase portrait or the system is:

spiral point - attractor.
Note That $\left(\begin{array}{cc}-1 / 2 & 1 \\ -1 & -1 / 2\end{array}\right)\binom{0}{1}=\binom{1}{-1 / 2}$ so the rotation is clockwise.

Diff $l q$ - H22 - Complex eigenvalues
In general, for a hd system $\vec{x}=A \vec{x}$, where the eigenvalues are complex: $\lambda_{1}=\lambda+i \mu, \lambda_{2}=\bar{\lambda}_{1}=\lambda-i \mu$, the eigenvectors will also be complex conjugate of each omer:

$$
x_{1}=y+i z, \quad x_{2}=\bar{x}_{1}=y-i z, \quad y, z \in \mathbb{R}^{2}
$$

We can always form a real fundamental set:

$$
\begin{aligned}
\vec{x}^{(1)} & (t) \\
= & =e^{\lambda, t} x_{1}=e^{(\lambda+i \mu) t}(Y+i z)= \\
& =e^{\lambda t}(\cos \mu t+i \sin \mu t)(Y+i z)= \\
& y \cos \mu t-Z \sin \mu t)+i e^{\lambda t}(Y \sin \mu t+Z \cos \mu t)
\end{aligned}
$$

$\left.\begin{array}{l}\vec{u}(t)=e^{\lambda t}(Y \cos \mu t-z \sin \mu t) \\ \vec{v}(t)=e^{x t}(Y \sin \mu t+z \cos \mu t)\end{array}\right\}$ Fundamental set.
Even more generally for an u-dimensimal system $\vec{x}^{\prime}=A x$, with real coefficient matrix $A \in \mathbb{R}^{n \times 4}$, The compex eigenvalues come in complex conjugate pairs and we can always replace The pairs of complex conjugate solutions with Their real and imaginary parts obtaining a real basis.
Ex: Consider the system

$$
x^{\prime}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \vec{x}
$$

The eigenvalve-eigenvector pairs are: $\lambda_{1}=i, X_{1}=\binom{1}{-i}, \lambda_{2}=-i, x_{2}=\binom{1}{i}$

$$
\begin{aligned}
& \vec{x}(\lambda)(t)=e^{i t}\binom{1}{-i}=(\cos t+i \sin t)\binom{1}{-i} \\
& \vec{k}(t)=\binom{\cos t}{\sin t}, \vec{v}(t)=\binom{\sin t}{-\cos t}
\end{aligned}
$$

$\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)\binom{0}{1}=\binom{-1}{0}$ so The rotalime is counterclockwise.

DIFERENTIAL EQUATIONS, BIFURCATIONS

Consider the following system of DE's depending on a parameter $\alpha \in \mathbb{R}$.

$$
\mathbf{x}^{\prime}=\left(\begin{array}{rr}
\alpha & 1 \\
-1 & 0
\end{array}\right) \mathbf{x}
$$

Describe how the phase portrait depend on α.
Solution: The characteristic polynomial of the coefficient matrix is

$$
\operatorname{det}\left(\begin{array}{rr}
\alpha-\lambda & 1 \\
-1 & -\lambda
\end{array}\right)=\lambda^{2}-\alpha \lambda+1=0
$$

The two eigenvalues are

$$
\lambda_{1,2}=\frac{\alpha \pm \sqrt{\alpha^{2}-4}}{2}
$$

There are the following possibilities depending on the value of the discriminant.
(1) $\alpha^{2}-4>0$. Then both eigenvalues are real and distinct.
(a) $\alpha<-2$. Then $\lambda_{1}<0, \lambda_{2}<0 \rightarrow$ stable node.
(b) $\alpha>2$. Then $\lambda_{1}>0, \lambda_{2}>0 \rightarrow$ unstable node.
(2) $\alpha^{2}-4<0$. Then we have two complex conjugate eigenvalues.
(a) $-2<\alpha<0 \rightarrow$ stable spiral point.
(b) $0<\alpha<2 \rightarrow$ unstable spiral point.
(c) $\alpha=0 \rightarrow$ center.
(3) $\alpha=-2 \rightarrow$ stable improper node.
(4) $\alpha=2 \rightarrow$ unstable improper node.

Try to imagine how the phase portrait types morph into each other as α changes from -3 to 3 . Can you see how the improper nodes separate nodes from spirals; or how the center separates the unstable spirals from the stable spirals?

DIFERENTIAL EQUATIONS, MASSES AND SPRINGS

Consider the two-mass, three-spring system drawn below, with no external forces.

Let $m_{1}=2, m_{2}=9 / 4, k_{1}=1, k_{2}=3$, and $k_{3}=15 / 4$.
a) Convert the dynamical equations of this system to four first order DE's and then write them in the form $u^{\prime}=A u$.
b) Using software, find the eigenvalues and the eigenvectors of A.
c) Write down the general solution of the system.
d) Describe the four fundamental modes of vibration as four-vectors of functions and also in English.
e) For each fundamental mode draw graphs of the displacements u_{1} and u_{2} versus t on the same graph.

Solution: The equations of motion read

$$
\begin{aligned}
& m_{1} u_{1}^{\prime \prime}=-\left(k_{1}+k_{2}\right) u_{1}+k_{2} u_{2} \\
& m_{2} u_{2}^{\prime \prime}=k_{2} u_{1}-\left(k_{2}+k_{3}\right) u_{2}
\end{aligned}
$$

Let's transform them into a system of four equations of 1st order. The new variables are defined as follows:

$$
y_{1}=u_{1}, \quad y_{2}=u_{2}, \quad y_{3}=u_{1}^{\prime}, \quad y_{4}=u_{2}^{\prime}
$$

In terms of these variables the equations of motion read

$$
\begin{aligned}
y_{1}^{\prime} & =y_{3}, \quad y_{2}^{\prime}=y_{4} \\
m_{1} y_{3}^{\prime} & =-\left(k_{1}+k_{2}\right) y_{1}+k_{2} y_{2} \\
m_{2} y_{4}^{\prime} & =k_{2} y_{1}-\left(k_{2}+k_{3}\right) y_{2}
\end{aligned}
$$

Plugging in the specific values we have

$$
\begin{aligned}
y_{1}^{\prime} & =y_{3}, \quad y_{2}^{\prime}=y_{4} \\
2 y_{3}^{\prime} & =-4 y_{1}+3 y_{2} \\
\frac{9}{4} y_{4}^{\prime} & =3 y_{1}-\frac{27}{4} y_{2}
\end{aligned}
$$

In matricial form the system is

$$
\mathbf{y}^{\prime}=A \mathbf{y}, \quad A=\left(\begin{array}{rrrr}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-2 & 3 / 2 & 0 & 0 \\
4 / 3 & -3 & 0 & 0
\end{array}\right)
$$

Now we have to compute the eigenvalue - eigenvector pairs (using software). The characteristic polynomial is:

$$
\operatorname{det}(A-\lambda I)=\lambda^{4}+5 \lambda^{2}+4=\left(\lambda^{2}+1\right)\left(\lambda^{2}+4\right)
$$

The eigenvectors-eigenvalues come in complex conjugate pairs:

$$
\begin{aligned}
& \lambda_{1}=i, \quad \xi_{1}=\left(\begin{array}{c}
3 \\
2 \\
3 i \\
2 i
\end{array}\right) ; \quad \lambda_{2}=-i, \quad \xi_{2}=\left(\begin{array}{c}
3 \\
2 \\
-3 i \\
-2 i
\end{array}\right) \\
& \lambda_{3}=2 i, \quad \xi_{3}=\left(\begin{array}{c}
3 \\
-4 \\
6 i \\
-8 i
\end{array}\right) ; \quad \lambda_{4}=-2 i, \quad \xi_{4}=\left(\begin{array}{c}
3 \\
-4 \\
-6 i \\
8 i
\end{array}\right)
\end{aligned}
$$

Next we rewrite the basic solutions in real terms

$$
\begin{aligned}
& \mathbf{x}^{(1)}(t)=e^{i t}\left(\begin{array}{c}
3 \\
2 \\
3 i \\
2 i
\end{array}\right)=(\cos t+i \sin t)\left(\begin{array}{c}
3 \\
2 \\
3 i \\
2 i
\end{array}\right) \\
&=\left(\begin{array}{c}
3 \cos t \\
2 \cos t \\
-3 \sin t \\
-2 \sin t
\end{array}\right)+i\left(\begin{array}{c}
3 \sin t \\
2 \sin t \\
3 \cos t \\
2 \cos t
\end{array}\right)=\mathbf{u}^{(1)}(t)+i \mathbf{v}^{(1)}(t)
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}^{(3)}(t)=e^{2 i t} & \left(\begin{array}{c}
3 \\
-4 \\
6 i \\
8 i
\end{array}\right)=(\cos 2 t+i \sin 2 t)\left(\begin{array}{c}
3 \\
-4 \\
6 i \\
8 i
\end{array}\right) \\
& =\left(\begin{array}{c}
3 \cos 2 t \\
-4 \cos 2 t \\
-6 \sin 2 t \\
8 \sin 2 t
\end{array}\right)+i\left(\begin{array}{c}
3 \sin 2 t \\
-4 \sin 2 t \\
6 \cos 2 t \\
-8 \cos 2 t
\end{array}\right)=\mathbf{u}^{(2)}(t)+i \mathbf{v}^{(2)}(t)
\end{aligned}
$$

The general solution is

$$
\mathbf{y}(t)=c_{1} \mathbf{u}^{(1)}+c_{2} \mathbf{v}^{(1)}+c_{3} \mathbf{u}^{(2)}+c_{4} \mathbf{v}^{(2)}
$$

The fundamental modes are $\mathbf{u}^{(1)}, \mathbf{v}^{(1)}, \mathbf{u}^{(2)}, \mathbf{v}^{(2)}$. Notice that for $\mathbf{u}^{(1)}, \mathbf{v}^{(1)}$ we have $y_{1}=3 / 2 y_{2}$ and at the same time $y_{3}=3 / 2 y_{4}$. This means that in these two modes the two masses are moving together (synchronously) in the same direction, but the first mass is moving $3 / 2$ times as far as the first mass. The frequency of these two modes is 1 (period 2π). For the mode $\mathbf{u}^{(1)}$ the phase difference between the positions and the velocities is $-\pi / 2$ and for the mode $\mathbf{v}^{(1)}$ this phase difference is $+\pi / 2$.

For $\mathbf{u}^{(2)}, \mathbf{v}^{(2)}$ we have $y_{1}=-3 / 4 y_{2}$ and at the same time $y_{3}=-3 / 4 y_{4}$. This means that in these two modes the two masses are moving in opposite directions (synchronously) and the first mass is moving $3 / 4$ times as far as the first mass. The frequency of these two modes is $2($ period $\pi)$. For the mode $\mathbf{u}^{(2)}$ the phase difference between the positions and the velocities is $-\pi / 2$ and for the mode $\mathbf{v}^{(2)}$ this phase difference is $+\pi / 2$.

For a general initial conditions we will have a linear combination of all four fundamental nodes. Here is what the dynamics of the displacements of the two masses looks like under the linear combination $2 u^{(1)}(t)-v^{(1)}(t)-3 u^{(2)}(t)+v^{(2)}(t)$.

