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DIFERENTIAL EQUATIONS, BIFURCATIONS

Consider the following system of DE’s depending on a parameter o € R.

;o a 1
x={_; o)X

Describe how the phase portrait depend on .

Solution: The characteristic polynomial of the coefficient matrix is

det(a__)l\ _)1\):)\2—a>\+1:0

The two eigenvalues are

\ atva?—4
2= — ("
' 2

There are the following possibilities depending on the value of the discriminant.

(1) a® —4 > 0. Then both eigenvalues are real and distinct.
(a) o < —2. Then A\; < 0, Ay < 0 — stable node.
(b) @ > 2. Then \; > 0, Ay > 0 — unstable node.

(2) a® —4 < 0. Then we have two complex conjugate eigenvalues.
(a) —2 < o < 0 — stable spiral point.
(b) 0 < a < 2 — unstable spiral point.
(¢) a =0 — center.

(3) @ = —2 — stable improper node.
(4) o = 2 — unstable improper node.

Try to imagine how the phase portrait types morph into each other as o changes
from —3 to 3. Can you see how the improper nodes separate nodes from spirals; or
how the center separates the unstable spirals from the stable spirals?



DIFERENTIAL EQUATIONS, MASSES AND SPRINGS

Consider the two-mass, three-spring system drawn below, with no external forces.

kl k2 k3
m1 —VYWVYWWWWW— 11y

Let mq = 2,me =9/4, k1 = 1,ky = 3, and k3 = 15/4.

a) Convert the dynamical equations of this system to four first order DE’s and then
write them in the form v’ = Au.

b) Using software, find the eigenvalues and the eigenvectors of A.

c) Write down the general solution of the system.

d) Describe the four fundamental modes of vibration as four-vectors of functions and
also in English.

e) For each fundamental mode draw graphs of the displacements u; and us versus ¢
on the same graph.

Solution: The equations of motion read

mlu’1' = —(kl + kg)ul + k2u2

mgug = k2u1 — (kg -+ /fg)UQ

Let’s transform them into a system of four equations of 1st order. The new vari-
ables are defined as follows:

Y1 = Ui, Yo =Up, Y3 = Uy, Yo = Uy
In terms of these variables the equations of motion read
/ /
Y1 =Y3, Y =UY4

mlyé = — (k1 + k2)yr + koyo
mzyf; = koy1 — (ko + k3)ye



2 DIFERENTIAL EQUATIONS, MASSES AND SPRINGS

Plugging in the specific values we have

Vi =Ys, Yo =1Ua
2ys = —4dy1 + 3y»
27

9
Z—lyﬁ; =3y — T

In matricial form the system is

0 0
0 0
—2 3/2
4/3 -3

y'=4y, A=

oo = O

1
0
0
0

Now we have to compute the eigenvalue - eigenvector pairs (using software). The
characteristic polynomial is:

det(A— M) =M +5 2 +4= (N +1)(\?+4)

The eigenvectors-eigenvalues come in complex conjugate pairs:

3 3

M=io b= 5 | =i, &=|
21 -2

3 3

N=2 &= o |1 =2 oa=|
—8i 81

Next we rewrite the basic solutions in real terms

3 3
xD(t) = ¢ 322 = (cost +isint) 322
2i 21
3cost 3sint
B 2cost | 2sint | () ()
| —3sint T 3cost | U (8) +av(t)

—2sint 2cost



DIFERENTIAL EQUATIONS, MASSES AND SPRINGS 3

3 3
(3) 92t —4 . .. —4
x(t)=e T (cos2t 4 isin2t) 6i
i &1
3 cos 2t 3sin 2t
—4 cos 2t —4sin 2t
_ ; _ 1(2) i (2)
- —6sin 2t te 6 cos 2t =u(t) +avo(t)
8sin 2t —8cos 2t

The general solution is
y(t) = cu™ + ;v + cqu® + v

The fundamental modes are u”, v, u® v, Notice that for u™, v} we have
y1 = 3/2 yo and at the same time y3 = 3/2 y4. This means that in these two modes
the two masses are moving together (synchronously) in the same direction, but the
first mass is moving 3/2 times as far as the first mass. The frequency of these two
modes is 1 (period 27). For the mode u the phase difference between the positions
and the velocities is —7/2 and for the mode v(!) this phase difference is 4 /2.

Mode ul

_2 4
y1in blue
y2 in green

Do 25 50 75 100 125 150 175
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DIFERENTIAL EQUATIONS, MASSES AND SPRINGS

Mode w1

¥1in blue

¥2 In green

0.0

25

For u®,v® we have y; = —3/4 v, and at the same time y3 = —3/4 y4. This
means that in these two modes the two masses are moving in opposite directions
(synchronously) and the first mass is moving 3/4 times as far as the first mass. The
frequency of these two modes is 2 (period 7). For the mode u® the phase difference
between the positions and the velocities is —7/2 and for the mode v(? this phase
difference is +7/2.

Mode u2

1 w1 n Hjue

¥2jng

0.0

25

il



DIFERENTIAL EQUATIONS, MASSES AND SPRINGS 5

Mode w2
Y Oy LI
y2lin gree
T T T T T T T T
0.0 25 50 75 100 125 150 175

For a general initial conditions we will have a linear combination of all four fun-
damental nodes. Here is what the dynamics of the displacements of the two masses
looks like under the linear combination 2u™ (¢) — v (¢) — 3u® (t) + v@ ().

20

=10 4

-=15 4

Two displacements

y1in blue
¥2 in green

0.0 25 50 75 10.0 125 15.0 175
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