Diff Cq-H24-Repeated Ligenvalves
Jordan normal form.
Ex: Consider the system

$$
\begin{gathered}
\vec{x}=A \vec{x}, \quad A=\left(\begin{array}{cc}
1 & -1 \\
1 & 3
\end{array}\right) \\
\left|\begin{array}{cc}
1-\lambda & -1 \\
1 & 3-\lambda
\end{array}\right|=\lambda^{2}-4 \lambda+4=(\lambda-2)^{2} \quad \lambda_{1}=\lambda_{2}=2 \\
\lambda_{1,2}=2\left(\begin{array}{cc|c}
-1 & -1 & 0 \\
1 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{cc|c}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \xi_{1}=\binom{1}{-1}
\end{gathered}
$$

Algetraic multiplicity $\rightarrow 2$; Geometric multiplicity $\rightarrow 1 \Rightarrow$ missing eigenvector.

We have may one solution $\vec{x}^{(1)}(t)=e^{2 t} \xi_{1}$.
Ausatz: We will search fur a second solution of the form

$$
\vec{x}^{(2)}(t)=t e^{2 t} \xi_{1}+e^{2 t} \eta
$$

Let's plug the ansatz in the system of $D E$'s we have

$$
\begin{aligned}
& \vec{x}^{(2)}=e^{2 t} \xi_{1}+2 t e^{2 t} \xi_{1}+2 e^{2 t} \eta=A\left(t e^{2 t} \xi_{1}+e^{2 t} \eta\right) \\
\Rightarrow & e^{2 t} \xi_{1}+2 e^{2 t} \eta=A e^{2 t} \eta \Rightarrow(A-2 I) \eta=\xi_{1}
\end{aligned}
$$

The generalized eigenvector η is a solution of a linear system

$$
\left(\begin{array}{cc|c}
-1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right) \rightarrow\left(\begin{array}{ll|c}
1 & 1 & -1 \\
0 & 0 & 0
\end{array}\right)=\binom{-1}{0}+s\binom{1}{-1}=\binom{-1}{0}+5 \xi_{1}
$$

The general solution is

$$
\begin{aligned}
& \vec{x}(t)=c_{1} \vec{x}^{(1)}(t)+c_{2} \vec{x}^{(2)}(t) \\
& \vec{x}(t)=c_{1} e^{2 t}\binom{1}{-1}+c_{2}\left[t e^{2 t}\binom{1}{-1}+e^{2 t}\binom{-1}{0}\right]
\end{aligned}
$$

The phase portrait is an unstable improper node:

Diff eq-1+24-Repealed eigenvalues
Jordan normal firm
We solve twice for c_{1} and c_{2} with The initial conditions ($\left.\begin{array}{l}1 \\ 0\end{array}\right)$ and $\binom{0}{1}$ to find the matrix expmential $\Phi(t)=e^{A t}$.

$$
\begin{aligned}
& \binom{1}{0}=c_{1}\binom{1}{-1}+c_{2}\binom{-1}{0} \Rightarrow c_{1}=0 \quad c_{2}=-1 \\
& \tilde{x}^{(1)}(t)=-t e^{2 t}\binom{1}{-1}-e^{2 t}\binom{-1}{0}=e^{2 t}\binom{1-t}{t} \\
& \binom{0}{1}=c_{1}\binom{1}{-1}+c_{2}\binom{-1}{0} \Rightarrow c_{1}=-1 \quad c_{2}=-1 \\
& \tilde{x}^{(2)}(t)=-e^{2 t}\binom{1}{-1}-\left[t e^{2 t}\binom{1}{-1}+e^{2 t}\binom{-1}{0}\right]=e^{2 t}\binom{-t}{1+t} \\
& e^{A t}=e^{2 t}\left(\begin{array}{cc}
1-t & -t \\
t & 1+t
\end{array}\right)
\end{aligned}
$$

We can also attempt to diagonalize the coefficient matrix A using the eigenvector ξ_{1} and the generalized eigenvector η

$$
\begin{aligned}
& T=\left(\xi_{1} \eta\right)=\left(\begin{array}{cc}
1 & -1 \\
-1 & 0
\end{array}\right), T^{-1}=\left(\begin{array}{cc}
0 & -1 \\
-1 & -1
\end{array}\right) \\
& T^{-1} A T=\left(\begin{array}{cc}
0 & -1 \\
-1 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
1 & 3
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right)=J
\end{aligned}
$$

J is the Jordan normal form of the undiagmalizable matrix A. What is e^{J} ?

$$
\begin{aligned}
& J^{2}=\left(\begin{array}{ll}
4 & 4 \\
0 & 4
\end{array}\right)=\left(\begin{array}{cc}
2^{2} & 2 \cdot 2^{1} \\
0 & 2^{2}
\end{array}\right): J^{3}=\left(\begin{array}{cc}
2^{3} & 3 \cdot 2^{2} \\
0 & 2^{3}
\end{array}\right) ; J^{4}=\left(\begin{array}{cc}
24 & 4 \cdot 2^{3} \\
0 & 2^{4}
\end{array}\right) \\
& J^{u}=\left(\begin{array}{cc}
2^{u} & u \cdot 2^{u-1} \\
0 & 2^{u}
\end{array}\right) \\
& e^{J t}=\sum_{u=0}^{\infty} \frac{(J t)^{u}}{u!}=\left(\begin{array}{cc}
\sum_{u=0}^{\infty} \frac{2^{u}}{u!} t^{u} & \sum_{u=0}^{\infty} \frac{2^{n-1}}{u} t^{u} \\
\sum_{u=0}^{\infty} & \frac{2^{u}}{u!} t^{u}
\end{array}\right)= \\
& \\
& =\left(\begin{array}{cc}
e^{2 t} & t e^{2 t} \\
0 & e^{2 t}
\end{array}\right)
\end{aligned}
$$

Diff lq-1124-Repeated eigenvalues.
Jordan normal form.

$$
\begin{aligned}
e^{A t} & =\sum_{u=0}^{\infty}\left(T J T^{-1}\right)^{u} / u!=T\left(\sum_{u=0}^{\infty} \frac{J^{u}}{u!}\right) T^{-1}=T e^{J t} T^{-1} \\
e^{A t} & =\left(\begin{array}{cc}
1 & -1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
e^{2 t} & t e^{2 t} \\
0 & e^{2 t}
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
-1 & -1
\end{array}\right)=e^{2 t}\left(\begin{array}{cc}
1 & -1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
-1 & -1
\end{array}\right)= \\
& =e^{2 t}\left(\begin{array}{cc}
1 & t-1 \\
-1 & -t
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
-1 & -1
\end{array}\right)=e^{2 t}\left(\begin{array}{cc}
1-t & -t \\
t & 1+t
\end{array}\right) \text { (same as before). }
\end{aligned}
$$

Here are the possible Jordan forms of 3×3 matrices:

$$
\begin{aligned}
& \left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right),\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right),\left(\begin{array}{ccc}
\lambda_{1} & 1 & 0 \\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right) \\
& \left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{1}
\end{array}\right),\left(\begin{array}{ccc}
\lambda_{1} & 1 & 0 \\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{1}
\end{array}\right) \cdot\left(\begin{array}{ccc}
\lambda_{1} & 1 & 0 \\
0 & \lambda_{1} & 1 \\
0 & 0 & \lambda_{1}
\end{array}\right)
\end{aligned}
$$

Cuing back to the 2×2 case $\vec{x}^{\prime}=A \vec{x}$ with $\lambda_{1}=\lambda_{2}=\lambda$ and only one eigenvector ξ_{1} the general solution is

$$
\vec{x}(t)=c_{1} e^{\lambda t} \xi_{1}+c_{2}\left[t e^{\lambda t} \xi_{1}+e^{\lambda t} \eta\right] \text {. }
$$

where the generalized eigenvector η satisfies

$$
(A-\lambda I) \eta=\xi_{1}
$$

or equivalently

$$
(A-\lambda I)^{2} \eta=(A-\lambda I) \xi_{1}=0
$$

DIFERENTIAL EQUATIONS, REPEATED EIGENVALUES

Solve the initial value problem

$$
\mathbf{x}^{\prime}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
-4 & 1 & 0 \\
3 & 6 & 2
\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=\left(\begin{array}{c}
-1 \\
2 \\
30
\end{array}\right)
$$

Solution:

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=\left(\begin{array}{rrr}
1-\lambda & 0 & 0 \\
-4 & 1-\lambda & 0 \\
3 & 6 & 2-\lambda
\end{array}\right)=-(\lambda-1)^{2}(\lambda-2) \\
\lambda_{1}=\lambda_{2}=1, \quad \lambda_{3}=2
\end{gathered}
$$

Next we find the eigenvectors

$$
\lambda=1,\left(\begin{array}{rrr|r}
0 & 0 & 0 & 0 \\
-4 & 0 & 0 & 0 \\
3 & 6 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 0 & 0 & 0 \\
0 & 1 & 1 / 6 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad \xi_{1}=\left(\begin{array}{c}
0 \\
-1 \\
6
\end{array}\right)
$$

The second eigenvector is 'missing', so we will solve for a generalized eigenvector

$$
\left(A-\lambda_{1} I\right) \eta=\xi_{1}, \quad\left(\begin{array}{rrr|r}
0 & 0 & 0 & 0 \\
-4 & 0 & 0 & -1 \\
3 & 6 & 1 & 6
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
1 & 0 & 0 & 1 / 4 \\
0 & 1 & 1 / 6 & 7 / 8 \\
0 & 0 & 0 & 0
\end{array}\right), \eta=\left(\begin{array}{c}
1 / 4 \\
7 / 8 \\
0
\end{array}\right)+s \xi_{1}
$$

Ignoring the term in η proportional to ξ_{1} we have

$$
\eta=\left(\begin{array}{c}
1 / 4 \\
7 / 8 \\
0
\end{array}\right)
$$

For the third eigenvalue we have

$$
\lambda=2,\left(\begin{array}{rrr|r}
-1 & 0 & 0 & 0 \\
-4 & -1 & 0 & 0 \\
3 & 6 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad \xi_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

The general solution is

$$
\mathbf{x}(t)=c_{1} e^{\lambda_{1} t} \xi_{1}+c_{2}\left[t e^{\lambda_{1} t} \xi_{1}+e^{\lambda_{1} t} \eta\right]+c_{3} e^{\lambda_{3} t} \xi_{3}
$$

$$
\mathbf{x}(t)=c_{1} e^{t}\left(\begin{array}{c}
0 \\
-1 \\
6
\end{array}\right)+c_{2}\left[t e^{t}\left(\begin{array}{c}
0 \\
-1 \\
6
\end{array}\right)+e^{t}\left(\begin{array}{c}
1 / 4 \\
7 / 8 \\
0
\end{array}\right)\right]+c_{3} e^{2 t}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

To satisfy the initial conditions we solve

$$
\begin{gathered}
\mathbf{x}(0)=c_{1}\left(\begin{array}{c}
0 \\
-1 \\
6
\end{array}\right)+c_{2}\left(\begin{array}{c}
1 / 4 \\
7 / 8 \\
0
\end{array}\right)+c_{3}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
-1 \\
2 \\
30
\end{array}\right) \\
c_{1}=-11 / 2, c_{2}=-4, c_{3}=3
\end{gathered}
$$

Substituting the coefficients back in the general solution we get

$$
\mathbf{x}(t)=-\frac{11}{2} e^{t}\left(\begin{array}{c}
0 \\
-1 \\
6
\end{array}\right)-4\left[t e^{t}\left(\begin{array}{c}
0 \\
-1 \\
6
\end{array}\right)+e^{t}\left(\begin{array}{c}
1 / 4 \\
7 / 8 \\
0
\end{array}\right)\right]+3 e^{2 t}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

After a simplification

$$
\mathbf{x}(t)=e^{t}\left(\begin{array}{c}
-1 \\
2 \\
-33
\end{array}\right)+t e^{t}\left(\begin{array}{c}
0 \\
-4 \\
24
\end{array}\right)+e^{2 t}\left(\begin{array}{l}
0 \\
0 \\
3
\end{array}\right)
$$

