$$
\text { Diff } 4 q-\xi 31-\text { Stabilily }
$$

We will restrict our altenticn to autonomous systems of DE's and just so That we can draw pretty pictures we will mostly consider the 2×2 case. So we will be concerned with systems of the form

$$
\frac{d x}{d t}=F(x, y), \quad \frac{d y}{d t}=G(x, y)
$$

win initial conditions $x\left(t_{0}\right)=x_{0}, y\left(t_{0}\right)=y_{0}$. The system is autornmors since the punctims $F(x, y), G(x, y)$ do not depend on t.

We will also write this type of system in vector form

$$
\frac{d \vec{x}}{d t}=\vec{f}(\vec{x}), \vec{x}\left(t_{0}\right)=\vec{x}^{0} \text {, where } \vec{x}(t)=\binom{x(t)}{y(t)}
$$

A solotim around The initial point $\vec{x}^{\prime 0}$ exists if $F(x, y), G(x, y)$ are contimooos with contionoors partial derivatives and the solution can be viewed as a carve in the $x y$-plane.
Ex: The linear system $\vec{x}^{\prime}=\vec{A} \vec{x}$ with a chstant coefficient matrix A is autonomous.

After the dichotomy linear/uoulinear the next useful dichotorny is autonomoos/norrautonoreroos. ©.g. Wo avtoncruors systems the phase diagram is indepent of t : a single phase portrait displays informative about the solutions of the system regardless of the uitial conditions.
Def: Consider an automors system of the form $\vec{x}^{\prime}=f(\vec{x})$.
a) The points where $\vec{x}^{\prime}=f(\vec{x})=0$ are called critical points. (Rede correspond to constant (equilibrium) solutims.
b) A critical point \vec{x}^{c} is said to be stable if $\forall \varepsilon>0, \exists \delta>0$ s.t. The solutions with initial conditims $\vec{x}^{0}=\vec{x}^{(0)}$ satisfy

$$
\left\|\vec{x}(0)-\vec{x}^{c}\right\|<\delta \Rightarrow\left\|\vec{x}^{\prime}(t)-\vec{x}^{c}\right\|<\varepsilon, \quad t \in[0, \infty)
$$

Differ - §31-stabilily

Informally his condition says that every solution which starts sufficiently close to \vec{x}^{c} will stay within a distance ε to \vec{x}^{c} for every ε and for every $t \in[0, \infty)$.

A critical point which is not stable is unstable.
c) A critical paint \vec{x}^{c} is said to be asymptotically stable if it is stable and $\exists \delta_{0}>0$ such that for initial cunditims

$$
\left\|\vec{x}(0)-\vec{x}^{c}\right\|<\delta_{0}
$$

The solutims satisfy

$$
\lim _{t \rightarrow \infty} \vec{x}^{-1}(t)=\vec{x}^{c}
$$

Pictures

rem: The limiting condition $\lim _{t \rightarrow \infty} \vec{x}(t)=\vec{x}^{c}$ does not imply stability. Examples exist where trajectories start close to \vec{x}^{c}, but then mure arbitrarily far away before returning to \vec{x}^{c} as $t \rightarrow \infty$.
(xx: Pendulum. The rate of change of angler mornentum is equal
 to the moment of the total force:

$$
\begin{aligned}
& m L^{2} \frac{d^{2} \theta}{d t}=-\Gamma L \frac{d \theta}{d t}-m g L \sin \theta \\
& \Rightarrow \frac{d^{2} \theta}{d t^{2}}+\gamma \frac{d \theta}{d t}+\omega^{2} \sin \theta=0
\end{aligned}
$$

In $1^{\text {st }}$ wobbler form:

$$
\frac{d x}{d t}=y_{1} \quad \frac{d y}{d t}=-\omega^{2} \sin x-\gamma y
$$

The critical points are $y=0, x=0$ - stable; $y=0, x=\pi$-unstable

$$
\text { Diff } U q-\xi 31 \text { - stabilily }
$$

If $\Gamma \neq 0,(0,0)$ is asymptotically stable. If $\Gamma=0,(0,0)$ is stable but not asyuuptolically stable.
ix: Cursideo The system

$$
\frac{d x}{d t}=-(x-y)(1-x-y) ; \quad \frac{d y}{d t}=x(2+y)
$$

The critical points are fond by solving

$$
(x-y)(1-x-y)=0, \quad x(2+y)=0
$$

There are fur critical points $(0,0),(0,1),(-2,-2),(3,-2)$. $(0,0)$ is a saddle point; $(0,1)$ is a spiral allractur $(-2,-2)$ is an altraclw node; $(3,-2)$ is a a repelleo uobe.
\rightarrow see phase diagrams in the appendix
(1) The saddle paint $(0,0)$ is unstable
(2) The spiral allvactur $(0,1)$ is asymptotically stable.
(3) The altraclur node $(-2,-2)$ is asymptotically stable
(4) The repelled node $(3,-2)$ is unstable.

Def: Let E be a point in The $x y$-plane 80 That a trajectory through approaches a critical print as $t \rightarrow \infty$. We say this trajectroy is attracted by the critical punt. The set of all such pints P is the basin of attraction of The critical paint It trajectory which bounds a basin of attraction is called a separatrix.
rem. Detevinination of the basins of alloraction is important for the understanding of the large-scale behavior of an autonomous system The trajectroies of a 2d autoummors system

$$
d x / d t=F(x, y), \quad d y / d t=G(x, y)
$$

can sometimes be determined by so (ving

$$
d y / d x=G(x, y) / F(x, y)
$$

$$
\text { Diff }<q-\S 31 \text { - Stability }
$$

ix: Find the trajecturies of the system

$$
x^{\prime}=4-2 y, \quad y^{\prime}=12-3 x^{2}
$$

Notice first that $(-2,2)$ and $(2,2)$ are critical points. The trajectories are obtained by solving

$$
\frac{d y}{d x}=\frac{12-3 x^{2}}{4-2 y}
$$

The solutions are

$$
4 y-y^{2}-12 x+x^{3}=c
$$

\rightarrow see phase diagraen in The appendix $(-2,2)$ is a center (stable, but not asyuppotically stable). $(2,2)$ is a saddle print unstable.

Phase Portrait

Phase portraits for the example on p. 3

