Diff eq- $\$ 33$ - Cumpeling species
Two similar species complete for a limited food supply (They do not prey on each other.

In The absence of competition the two species population follow togistic growth each:

$$
\frac{d x}{d t}=x\left(\varepsilon_{1}-\sigma_{1} x\right), \quad \frac{d y}{d t}=y\left(\varepsilon_{2}-\sigma_{2} y\right)
$$

In the presence of competition the dynamics becomes

$$
\frac{d x}{d t}=x\left(\varepsilon_{1}-\sigma_{1} x-\alpha_{1} y\right), \quad \frac{d y}{d t}=y\left(\varepsilon_{2}-\sigma_{2} y-\alpha_{2} x\right)
$$

d,12 are measures of the degree in each me of the species inteferes with the other.

Ex: $\frac{d x}{d t}=x(1-x-y), \frac{d y}{d t}=y(0.75-y-0.5 x)$
To find the critical points we solve the algebraic system

$$
x(1-x-y)=0 \quad y(0.75-y-0.5 x)=0
$$

The fore critical points are

$$
\underbrace{\binom{0}{0},\binom{0}{0.75}},\binom{1}{0}, ~\binom{0.5}{0.5}
$$

one of the species is absent Thoth species are present.
To investigate the behaviour of the system we need the Jacobian:

$$
J=\left(\begin{array}{ll}
1-2 x-y & -x \\
-0.5 y & 0.75-2 y-0.5 x
\end{array}\right)
$$

$\operatorname{At}\binom{0}{0}:\binom{x}{y}^{\prime}=\left(\begin{array}{cc}1 & 0 \\ 0 & 0.75\end{array}\right)\binom{x}{y}, \lambda_{1}=1, \lambda_{2}=0.75$ unstable
$\operatorname{At}\binom{0}{0.75}:\binom{u}{v}^{\prime}=\left(\begin{array}{cc}0.25 & 0 \\ -0.375 & -0.75\end{array}\right)\binom{u}{v}, \quad \lambda_{1}=0.25, \lambda_{2}=-0.75$ unstable
At $\binom{1}{0}:\binom{u}{v}^{\prime}=\left(\begin{array}{cc}-1 & -1 \\ 0 & 0.25\end{array}\right)\binom{u}{v}, \quad \lambda_{1}=-1, \lambda_{2}=0.25$ unstable
At $\binom{0.5}{0.5}:\binom{u}{v}^{\prime}=\left(\begin{array}{cc}-0.5 & -0.5 \\ -0.25 & -0.5\end{array}\right)\binom{y}{v}, \begin{gathered}\lambda_{1} \approx-0.146, \lambda_{2} \approx-0.854 \\ \text { Asymptotically stable. }\end{gathered}$
see appendix.
Asymptotically stable.

Diff $4 q-\S 33$ - competing species
UK: $\frac{d x}{d t}=x(1-x-y), \quad \frac{d y}{d t}=y(0.5-0.25 y-0.75 x)$
The critical points are: $\binom{0}{0},\binom{1}{0},\binom{0}{2},\binom{0.5}{0.5}$.
The Jacobian is

$$
J=\left(\begin{array}{cc}
1-2 x-y & -x \\
-0.75 y & 0.5-0.5 y-0.75 x
\end{array}\right)
$$

At $\binom{0}{0}: J=\left(\begin{array}{cc}1 & 0 \\ 0 & 0.5\end{array}\right), \lambda_{1}=1, \lambda_{2}=0.5$ unstable.
At $\binom{1}{0}: J=\left(\begin{array}{cc}-1 & -1 \\ 0 & -0.25\end{array}\right), \lambda_{1}=-1, \lambda=-0.25$ Asymptotically stable. At $\binom{0}{2}: J=\left(\begin{array}{cc}-1 & 0 \\ -1.5 & -0.5\end{array}\right), \lambda_{1}=-1, \lambda_{2}=-0.5$ Asymptotically stable. At $\binom{0.5}{0.5}: J=\left(\begin{array}{ll}-0.5 & -0.5 \\ -0.375 & -0.125\end{array}\right) \quad \lambda_{1} \approx 0.1544, \lambda_{2} \approx-0.7844$ Unstable.
The phase diagram (see Appendix) has a separalvix which divides The $1^{\text {st }}$ quadrant into two basins of attractive: That of $\binom{1}{0}$ and ha of ($\left.\begin{array}{l}0 \\ 2\end{array}\right)$. So in This example Rare is no stable coexistence state.

Phase portrait for the system on page 0 .

Phase portrait for the system on page 1.

