DISCRETE MATHEMATICS, CLASS EXERCISE 14

- (1) Let $f: S \to T$ and $g: T \to U$ be functions. Prove or disprove that $g \circ f$ is a bijection iff f and g are bijections.
- (2) Find the composition of the following cycles representing permutations on N. Write your answer as a union of one or more disjoint cycles.

 $(2, 11, 13, 6) \circ (10, 11, 4) \circ (2, 8, 6, 4)$

- (3) Let $f : S \to T$ be a function. Define a binary relation ρ on S by $x\rho y \leftrightarrow f(x) = f(y)$.
 - a) Prove that ρ is an equivalence relation.
 - b) What could be said about the equivalence classes if f is an injection? c) For $S = T = \mathbb{R}$ and $f(x) = \sin x$, describe the equivalence classes of the equivalence relation on \mathbb{R} defined by this function.
- (4) Let $S = \{a, b, c, d\}$. How many surjective functions are there from S to itself? Prove or disprove that any surjection $S \to S$ is necessarily also a bijection.
- (5) Let A be a finite set of cardinality n and let $\mathbf{2} = \{0, 1\}$ be the two element set. Compare the cardinalities of the two sets of functions $A \to \mathbf{2}$ and $\mathbf{2} \to A$. Which one is larger for large n.
- (6) Let $A = \{x, y\}$ and let A^* be the set of all strings of finite length made up of symbols from A. A function $f : A^* \to A^*$ is defined as follows: for $s \in A^*, f(s) = xs$ (the single character string x followed by s). Is f one-toone? Prove or disprove. Is f onto? Prove-or-disprove.
- (7) Let S = {a, b, c, d} and T = {1, 2, a}.
 a) How many relations are there from S to T?
 b) How many functions are there from S to T?
 c) How many injective, surjective and bijective functions are there from S to T?