§16. Gaussian Random Variables

Definition 1

A random variable X is **Gaussian (normal)** if it has the pdf

$$
P(x) = \frac{1}{\sqrt{2\pi}\,\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \qquad -\infty < x < \infty, \qquad \sigma > 0
$$

Let's check that this is a valid pdf.

Let
$$
z = \frac{x - \mu}{\sigma}
$$
. Then
\n
$$
\int_{-\infty}^{\infty} p(x) dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x - \mu)^2}{2\sigma^2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{z^2}{2}} dz = I
$$

Let's rotate $\frac{1}{\sqrt{2}}$ 2π $e^{-\frac{z^2}{2}} = w$ about the w-axis.

The resulting surface is $w = \frac{1}{\sqrt{2}}$ √ 2π $e^{-\frac{z^2+y^2}{2}}$ 2

The volume under this surface is:

$$
\text{Vol.} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{z^2 + y^2}{2}} dz dy = \frac{1}{\sqrt{2\pi}} \left(\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx \right) \left(\int_{-\infty}^{\infty} e^{-\frac{y^2}{2}} dy \right) = I^2 \sqrt{2\pi}
$$

Figure 1: Normal Distribution. Observe the very thin tails

Using cylindrical shells

$$
\text{Vol.} = \frac{1}{\sqrt{2\pi}} \int_0^\infty 2\pi r e^{-\frac{r^2}{2}} dr = \sqrt{2\pi} \int_0^\infty r e^{-\frac{r^2}{2}} dr = \sqrt{2\pi}
$$
\n
$$
\sqrt{2\pi} = I^2 \sqrt{2\pi} \implies I^2 = 1 \implies I = 1 \quad ; \quad \text{this is a valid density.}
$$

Next, let's compute the mean and variance

$$
E(X) = \int_{-\infty}^{\infty} x \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx
$$
 Let $z = \frac{x-\mu}{\sigma}$, $x = \mu + z\sigma$

$$
= \mu \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{z^2}{2}} dz + \sigma \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} z e^{-\frac{z^2}{2}} dz
$$

$$
= \mu
$$

$$
E(X^{2}) = \int_{-\infty}^{\infty} x^{2} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}} dx , \quad z = \frac{x-\mu}{\sigma}
$$

\n
$$
= \int_{-\infty}^{\infty} \frac{(\sigma z + \mu)^{2}}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} dz
$$

\n
$$
= \sigma^{2} \int_{-\infty}^{\infty} \frac{z^{2}}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} dz + 2\mu \sigma \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} dz + \mu^{2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} dz
$$

\n
$$
= \sigma^{2} + \mu^{2}
$$

$$
\text{Var}(X) = E(X^2) - E(X)^2 = \sigma^2
$$

Theorem 1
If
$$
X \sim N(\mu, \sigma)
$$
 then $Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$

Proof.

$$
F(z) = P(Z \le z) = P\left(\frac{X-\mu}{\sigma} \le Z\right) = P(X \le \mu + z\sigma) = F(\mu + z\sigma)
$$

Remember that $F(x) = \int_{-\infty}^{z} p(t) dt \implies F'(z) = p(z)$

$$
P(z) = F'(z) = F'(\mu + z\sigma) \cdot \sigma = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(\mu + z\sigma - \mu)^2}{2\sigma^2}} \cdot \sigma
$$

$$
= \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}
$$

Thus, $Z = \frac{X - \mu}{\sigma}$ σ is standard normal.

 \Box

The error function is defined as

$$
\mathrm{erf}(X) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt
$$

The cumulative of the standard normal is

$$
\Phi(Z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-t^2} dt = \frac{1}{2} + \frac{1}{2} \operatorname{erf} \left(\frac{z}{\sqrt{2}} \right)
$$

Example 1

- a. $P(Z < -1.82) = 0.0344$
- b. $P(Z < 1.09) = 0.8621$
- c. $P(Z > 0.64) = 1 P(Z \le 0.64)$ $= 1 - 0.7389 = 0.2611$
- d. $P(0.12 < Z \le 2.08) = P(Z \le 2.08) P(Z < 0.12) = 0.9812 0.578 = 0.4334$

Example 2

The student grades in Calculus 2 are normally distributed with μ = 68 and σ = 13. What is the probability that the Cal 2 grade of a random student is

- a. $X > 90$
- b. $X < 40$
- c. $70 < X < 75$

Solution

a.
$$
Z = \frac{90 - 68}{13} = 1.69
$$

\n $P(X > 90) = P(Z > 1.69)$
\n $= 1 - 0.9545$
\n $= 0.0455$
\nb. $Z = \frac{40 - 68}{13} = -2.15$
\n $P(X < 40) = P(Z < -2.15)$
\n $= 0.0158$

c.
$$
Z = \frac{70.68}{13} = 0.15
$$
 $Z = \frac{75 - 68}{13} = 0.54$

$$
P(70 < X < 75) = P(0.15 < Z < 0.54) \\
= 0.7054 - 0.5596 \\
= 0.1458
$$

Example: Cont'd

 $X = 75$ $P = 0$. We are approximating a discrete distribution with continuous. To be discussed in detail in the next lecture.

Example: Cont'd

What are the top 10% and bottom 10% percentiles of the Cal 2 grades distribution.

 P_{10} : $Z = -1.28$ $x = \mu + z\sigma = 68 + (-1.28)13 = 51.36$ P_{90} : $Z = 1.28$ $x = \mu + z\sigma = 68 + (1.28)13 = 84.64$

Example 3

The average weight of Canadian men is $\mu = 178.2 \, \text{cm}$ with σ = 7.4 cm. Assume Gaussian distribution of heights.

- a. What is the probability that a randomly selected Canadian man is more than $2 m$ tall?
- b. J.T. is 188.0 cm tall. At what percentile of the Canadian male population is his height?
- c. What is the top 20% percentile of the height distribution of Canadian males?

Solution

a.
$$
Z = \frac{200 - 178.2}{7.4} = 2.95
$$

\n $P(X > 200) = P(Z > 2.95)$
\n $= 1 - 0.9984$
\n $= 0.6016$

b.
$$
Z = \frac{188 - 178.2}{7.4} = 1.32
$$

\n $P(Z < 1.32) = 0.9066 \sim P_{91}$; The ninety-first percentile
\nc. $P_{80} \rightarrow Z = 0.84$
\n $x = \mu + z\sigma = 178.2 + 0.84(7.4) = 184.42$ cm.

Note: That for any Gaussian distribution we have:

$$
P(\mu - \sigma \le X \le \mu + \sigma) = P(-1 \le z \le 1) = 0.6827
$$
 Chebychev says nothing

$$
P(\mu - 2\sigma \le X \le \mu + 2\sigma) = P(-2 \le z \le 2) = 0.9545
$$
At least $1 - \frac{1}{2^2} = 0.75$

$$
P(\mu - 3\sigma \le X \le \mu + 3\sigma) = P(-3 \le z \le 3) = 0.9973
$$
At least $1 - \frac{1}{3^2} = 0.8889$