§18. t-Random Variables

t- distribution is a member of a one parameter family of random variables. The member of the t-family have heavier tails than the normal random variables.

Definition 1

A random variable X is **t-distributed** with ν - degrees of freedom, $X \sim \text{Stud}(\nu)$ if it has pdf

$$p(x) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{x^2}{2}\right)^{-\frac{\nu+1}{2}} , \qquad x \in \mathbb{R}$$

Remark The Gamma function is defined as $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$ for x > 0Integration by parts shows that on the natural numbers $\Gamma(n) = (n-1)!$

Example 1

$$\nu = 1 \qquad p(x) = \frac{1}{\pi (1 + x^2)} \quad \text{; so this is Cauchy;}$$

$$\nu = 2 \qquad p(x) = \frac{1}{2\sqrt{2} \left(1 + \frac{x^2}{2}\right)^{3/2}}$$

$$\nu = 3 \qquad p(x) = \frac{2}{\pi\sqrt{3} \left(1 + \frac{x^2}{3}\right)^2}$$

$$\vdots$$

$$\nu \to \infty \qquad p(x) \to \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \quad \text{; so this is the standard normal.}$$

t-distributed random variables are usually deployed to study the sample mean of a sample drawn from a normal distribution when the variance

of the Gaussian is unknown.

Let $X_1, X_2, \ldots, X_n \sim N(\mu, \sigma^2)$ and let $\overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$ be the sample mean (it is a random variable as well). Then

$$Z = \frac{X - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$
 and $T = \frac{\overline{X} - \mu}{s / \sqrt{n}} \sim \text{Stud}(\nu)$, $\nu = n - 1$

where $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$ is the sample variance.

Example 2

A US company claims that their whole house water filters last on average 300 days. Assume that the life span of these filters is normally distributed. Yvan has (unwittingly) collected a sample of 15 such filters. The sample average is 290 days with sample standard deviation of 50 days. Compute the percentile value of this sample.

Solution

$$t = \frac{\bar{x} - \mu}{s/\sqrt{n}} = \frac{290 - 300}{50/\sqrt{15}} = -0.7746 \text{ with } \nu = n - 1 = 14 \, df$$

$$P(T < -0.7746) = 0.2257 \sim 23 \text{ percentile.}$$

Example 3

The historical daily high for Montreal on April 1^{st} is $7^{\circ}C$. Assume that these April 1^{st} daily highs are normally distributed. A sample of daily highs in April 1^{st} from the last 6 years shows:

 $6.8 \quad 7.2 \quad 8.9 \quad 11.2 \quad 5.9 \quad 10.4$

Compute the percentile position of this sample (do this in excel).

Solution $\bar{x} = 8.4$; s = 2.1138 $t = \frac{84 - 7}{2.1138/\sqrt{6}} = 1.622$ with $\nu = 5 df$ $P(T < 1.622) = 0.9171 \sim P_{92}$

