§19. Gamma Random Variables

The time to the first event in a Poisson process is exponentially distributed. What is the distribution of the time until the r^{th} event?

Example 1

In a datacenter the main number of failures per hour is 0.0001. Let X be the time until 4^{th} failure occurs. Determine P(X < 40000).

Solution

Observe that $P(X > 40000) = P(N \le 3)$ where N has a Poisson distribution with E(N) = 40000(0,0001) = 4 per 40000 h

$$P(X > 40000) = P(N \le 3) = \sum_{k=0}^{3} \frac{e^{-4} \cdot 4^{k}}{k!} = 0.433$$
$$P(X < 40000) = 1 - 0.433 = 0.567$$

This example can be generalized to show that if x is the time until the r^{th} event in a Poisson process with rate λ , then

$$P(X > x) = \sum_{k=0}^{r-1} \frac{e^{-\lambda x} (\lambda x)^k}{k!}$$
 and $P(X < x) = 1 - \sum_{k=0}^{r-1} \frac{e^{-\lambda x} (\lambda x)^k}{k!}$

Definition 1

Consider the random variable X which denotes the time to r^{th} event in a Poisson process with rate λ .

Then X is called **Erlang random variable**, $X \sim \text{Earlang}(\lambda, r)$ and has cpf

$$F(x) = 1 - \sum_{k=0}^{r-1} \frac{e^{-\lambda x} (\lambda x)^k}{k!}$$

Let's compute the pdf of the Erlang

$$p(X) = F'(X)$$

$$= -\sum_{k=0}^{r-1} \frac{(-\lambda)e^{-\lambda x}(\lambda x)^{k}}{k!} - \sum_{k=0}^{r-1} \frac{e^{-\lambda x} \cdot (\lambda k) \cdot (\lambda x)^{k-1}}{k!}$$

$$= \lambda e^{-\lambda x} \left[\sum_{k=0}^{r-1} \frac{(\lambda x)^{k}}{k!} - \sum_{m=0}^{r-2} \frac{(\lambda x)^{m}}{m!} \right] \qquad \text{the } (r-1) \text{ terms cancel}$$

$$p(x) = \frac{\lambda^r x^{r-1} e^{-\lambda x}}{(r-1)!} \qquad ; \qquad x > 0, \quad r = 1, 2, 3, \dots$$

Now we know $(r-1)! = \Gamma(r)$, so naturally we can extend this density to non-integer values of r.

Definition 2

A **Gamma random variable** is a random variable X with pdf

$$p(x) = \frac{\lambda^r x^{r-1} e^{-\lambda x}}{\Gamma(r)} \quad x > 0$$

 $X \sim \text{Gamma}(\lambda, r)$. The parameters λ and r a called **scale** and **shape** parameters. The expected value and the variance are

$$E(x) = \frac{r}{\lambda}$$
 $\operatorname{Var}(X) = \frac{r}{\lambda^2}$

Example 2

Suppose $X \sim \text{Gamma}(2.3, 4.7)$. Use excel to compute P(X < 2).

Solution

$$\alpha = r$$
 $\beta = \frac{1}{\lambda}$ $P(X < 2) = 0.5431$

When $r = \frac{k}{2}$ and $\lambda = \frac{1}{2}$, the Gamma random variable is called χ^2 random variable with k degrees of freedom. $X \sim \chi^2(k)$ The pdf is

$$p(x) = \frac{1}{2^{k/2} \Gamma(k/2)} x^{k/2-1} e^{-x/2}$$

One reason χ^2 is very important: Let Z_1, \ldots, Z_k be independent, standard normal random variables. Then

$$Q = \sum_{i=1}^{u} Z_i^2 \quad \text{is} \quad Q \sim \chi^2(k)$$

From the results on the more general Gamma family we have:

$$E(Q) = \frac{k/2}{1/2} = k$$
 $Var(Q) = \frac{k/2}{(1/2)^2} = 2k$