§22. Sums of Random Variables

In many contexts the random variables of interest is a sum of “more
elementary” random variables.

Example 1
Let X4, X5, ..., X, be a sequence of independent random variables
1-p
X 1 ;  with probability, p
i= o7la P
0 ;  with probability, 1-p
0 1

Let X = X1+ X5+ X3+--+ X, then

P(X=xz)=,C,p"(1-p)"*
i.e. X ~Binom(n,p)

Example 2

=T

X, Y - Discrete Uniform[1, 6]
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2 7 12
Example 3

Let X; ~exp(1). Then from before

1
M, (t) = —
()=
Let X = X1+ X5+ X3+ -+ X,, be the sum of n independent
exponentials.
1
Mx (t) = Mx, (1) - Mx, (t)-Mx, (t) = -

Notice that E(X)=n-1=nand Var(X)=n-1=n=0(X) =/n.
Consider the random variable

X-EX) X-n
o(X)  Un
For its moment generating function we have:
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Let’s investigate the limit n - oo. To simplify the computation we
will evaluate the limit of In (M, (t)) as u — .

-4
lim In (M,(t)) = lim In {e‘tﬁ (1 - —) }

=%i_{£10{—t\/ﬂ—nln(1—%)} = %

The Taylor expansion of In(1 + z) is:
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Thus,

lim M, (t) = e"’/? « the moment generating function of standard

normal and Z is standard normal in the limit (asymptotically).



