
§23. The Central Limit Theo-
rem and the Weak Law of Large
Numbers

Theorem: The Central Limit Theorem (one version)

Let X1, X2, . . . Xn be a random sample of size n from a random
variable (population) X with mean µ and variance σ2. The limit-
ing, n→∞, distribution of

Z = x̄ − µ
σ/√n is N(0,1)

provided X has a moment generating function.. In the formula

x̄ = 1

n

n

∑
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is the sample mean.

Proof.
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∞
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, where µi = E(X i). Then
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⇒ n logMX (
t

n
) = µ1t +

σ2

n
⋅ t

2

2
+O ( 1

n2
) as n→∞

{σ2 = µ2 − µ2
1}

This shows that

MX̄ ÐÐ→
n→∞

eµt+
(σt)2
2n

and this is the moment generating function for the RV ∼ N (µ, σ2

n )

Example 1

X ∼ Binom(n, p) is a sum of n Bernoulli random variables Yi ∶

Yi =
⎧⎪⎪⎨⎪⎪⎩

1 ; p

0 ; 1 − p

MY (t) = ∑
x

etyp(y) = etp+(1−p) ⇒MX(t) = [etp+(1−p)]]n ⇒
The moment generating function of binomial.

Let µ = np, σ2 = np(1 − p), and Z = X − µ
σ

logMZ(t) = log {e−
µt
σ [e t

σ p + (1 − p)]
n
}

= −µt
σ
+ n log [(1 − p) + p(1 + t

σ
+ t2

2!σ2
+ t3

3!σ3
+ . . .)]

= −µt
σ
+ n log [1 + p( t

σ
+ t2

2!σ2
+ t3

3!σ3
+⋯)]

=
�
�
�−µt
σ
+ n(

�
�
�pt

σ
+ pt2

2!σ2
+ pt3

3!σ3
+⋯) − n

2
(pt
σ
+ pt2

2σ2
+⋯)

2

+⋯

= t2

2
[np
σ
− np2

σ2
] +O ( 1

n
)

= t2

2
[np(1 − p)

σ2
] +O ( 1

n
)

= t2

2
+O ( 1

n
)

Thus Z ÐÐ→
n→∞
∼ N(0,1)

Example 2

Use CLT to approximate the probability that the sum of 100
tosses of a fair die is in the range 340-360.

For a fair die we have µ = 3.5, σ = 1.708. The sample averages
for the boundaries of the given range are x̄1 = 340/100 = 3.4 and
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x̄2 = 360/100 = 3.6. The left boundary sample z-score is

z1 =
x1 − µ
σ/√n =

3.4 − 3.5
1.708/

√
100
= −0.59

and by symmetry z2 = 0.59. Thus

p(340 ≤ ∑Xi ≤ 360) ≈ p(3.4 ≤ X̄ ≤ 3.6) =

p(−0.59 ≤ z ≤ 0.59) = 0.7224 − 0.2776 = 0.4448

The Weak Law of Large Numbers (WLLN)

The CLT allows us to solve he following problem: we have a random
variable (population) with unknown mean, µ; determine µ with a given
accuracy from a (large) sample. Here is how:

Let X1, X2, . . . ,Xn be a random sample from a random variable X with
finite mean and variance: E (Xi) = E(X) = µ; Var (Xi) = Var(X) = σ2

Let X̄ = 1
n∑xi be the sample mean.

Then E(X̄) = µ and Var(X̄) = Var(X)
n

Applying Chebyshev’s inequality for some k, we have

P (∣x̄ − µ∣ ≤ k σ√
n
) ≥ 1 − 1

k2
, k > 0

Let ε = k σ√
n
, i.e. k = ε

√
n

σ
. We have

P (∣x̄ − µ∣ ≤ ε) ≥ 1 − σ2

nε2

so we have The Weak Law of Large Numbers.

Law: The Weak Law of Large Numbers

For arbitrary (small) ε > 0, as n→∞.

P (∣x̄ − µ∣ ≤ ε) Ð→
n→∞

1.

WLLN specifies that for any nonzero margin (ε), no matter how
small, with n sufficiently large sample, the probability approaches
1 that the sample average is closer to the expected value then the
margin. (This is convergence in probability; different than the
pointwise convergence in Calculus).
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Example 3

Let X be a Bernoulli random variable:

P (X) =
⎧⎪⎪⎨⎪⎪⎩

p ; if x = 1
1 − p ; if x = 0

Then E(X) = p, Var(X) = p(1 − p)

Let X1, X2, . . . ,Xn be a random sample of X. Let x̄ be the sample
mean. Then

E(X) = p Var(x̄) = p(1 − p)
n

Prob
⎛
⎝
∣x̄ − p∣ ≤ k

√
p(1 − p)

n

⎞
⎠
≥ 1 − 1

k2

with ε = k
√

p(1 − p)
n

Prob(∣x̄ − p∣ ≤ ε) ≥ 1 − p(1 − p)
n ⋅ ε2

so we can use (large) random samples to estimate the probability
for success in Bernoulli (hence in Binomial) with any given preci-
sion.
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