§27. Linear Regression

The model is
Y =0+ froy + Bowa + -+ Brap + €

where
Y - dependent variable (or response)
x; - independent variables (or predictors)
B; - regression coefficients | [, - intercept

€ - noise term

Least Squares Estimation of The Parameters

Say

(Ti1, Tiny oo Tig,ys) 5 1=1,....m, n>k
are observed data points.
Let

& =Y~ (50 + i+ 5n$ik)

be the residuals.

Then
k

L=>¢

i=1

)

is the sum of squared ‘errors’. This is the quantity we would like to

minimize:

L n :
agzaiim—%j;@%ﬁ%fﬂ

i=1

and we can solve for 5;. It is best to write everything in matrix notation

h 1z oz B
y=|: X=|: : p=|:

- Remark

This model covers
 nonlinear cases as
well.

E.g.

— — 72
rl1 =T, I2=,
T3 =TZ, T4=2Z2,
s 222

So:

Y =pg+ Pz + ,32152 + B3x2

+,34z+65z2 +¢€
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Then the solutions of the least squares equations (1) are
B=(XTX)"XTy
The hat on /3 signifies values estimated from the data. For the fitted
model predictions, we have ¢ = X3 and the residuals are
e=y—jy

Assume that the errors, ¢;, are independent and identically distributed
distributed random variables with mean 0, and variance 2.

Then
1. B=(XTX)1XTy is an unbiased estimator for j :
E(B)=8
2. An unbiased estimator for o2 is
D¢
~9 i=1 E;EJE
o = = —
n-p n-p

where p = k£ + 1 is the number of parameters in the model.

Significance of The Regression

Many different test for the ‘quality’ of the regression could be done. Here
are some.

1. Tests on the individual repression coefficients:

Hy = B; = Bjo versus Hy : 3; # Bjo
The test statistic is:

to=§j—_—@—0 ; (n—p) df

/520 ..
0°Cjj

where ¢;; is the j* diagonal element of (X7X)™",
The most important special case is Hy : 3; = 0 versus H; = 3; # 0

and Hj is not rejected. This indicates that the regressor, x;, can
be deleted from the model.

2. R? and dej
Sy =3 e SST=iy?—%(Zyi)2; SSg =857 - SSx
=1 1=1
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Example

R? = 0.98 indicates that the model accounts for 98% of the vari-
ability in the data.

Note: R? can never decrease when a regressor is added. Adding a new
regressor which only marginally increases R? could be counterproductive
- the model is less interpretable; Occam’s razor. Thus, the adjusted R?
statistic is (heavily) used:

SSg/(n-p)

Ba =1 g5, 1tn =)

adj —
R? dj penalizes the analyst for adding terms to the model and is an easy

way to prevent over fitting, including regressors which are not really
useful. R? 4 18 used for variable selection.

Confidence and Prediction Intervals in Re-
gression

A 100(1 — @)% confidence interval on the regression coefficient 3; is

Bj - ta/g\/OA'Qij < ﬁz < Bj + ta/Q V 620jj ; (7’L _p) df

A 100(1 - @)% confidence interval on the mean response at the point
Loty ---5L0k is

A~ A~ T -1 ~ N T -1
Mleo_taﬂ\/Uz% (27x) w0 < fye £ v +ta/2\/02% (27x)" xo

A 100(1 - a)% prediction interval for a future observation of the re-
sponse, Y, at xg1,..., Tk 1S

Qo—ta/g\/UQ(l +ai(xTx) ) < Yo < 1 +ta/2\/02(1+x8(ﬂx)‘1:c0)

Remark

This prediction interval expresses both the error in estimating the mean Never extrapolate
of Y| zy as well as the inherent variability of ¥ at fixed z = x. far from the datal

Selection of Variables and Model Building

e Step-wise regression. Adding or removing variables at each step
based on F-test

e Forward selection: variables are added me at a time

e Backwards elimination: start will all possible regressors and elim-
inate the insignificant ones one at a time.
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Multicollinearity

It is expected that there might be dependencies between the regressors
themselves.

Let R? be the coefficient of determination resulting from regressing x; on

the remaining £ — 1 regressors. The variance of Bj is effectively ‘inflated’
with variance inflation factor for 3;:

1
1-R?

J

VIF (85) =

Estimation of the regression coefficients is very imprecise when multi-
collinearity is present. To combat multicollinearity it might be possi-
ble to collect more data or simply use a different (nonlinear regression)
model.



