§6. Discrete Random Variables

In many situations the sample points of a random experiment are labelled with numerical values (possibly vectorial).

Example 1

Toss a die: $S = \{1, 2, 3, 4, 5, 6\}$

Toss two dice: $S\left\{\binom{1}{1}, \binom{1}{2}, \binom{1}{3}, \cdots, \binom{6}{5}, \binom{6}{6}\right\}$

Non-example: Toss a coin $S = \{H, T\}$, but we can relabel to $S = \{0, 1\}$

Definition 1

A random variable (RV), X, is a function from the sample space S into the real numbers:

 $X:S\to\mathbb{R}$

- a multivariate (vectorial) random variable is $X: S \to \mathbb{R}^n$
- a discrete RV is $X: S \to \mathbb{N}$ or $X: S \to \mathbb{Z}$ or ...

Example 2

The number of attempts until an exam is passed is a discrete RV.

 $P \rightarrow 1; \quad FP \rightarrow 2; \quad FFP \rightarrow 3; \quad FFFP \rightarrow 4; \ldots$

Notice that S is infinite. Say at any attempt that $P(P) = P(F) = \frac{1}{2}$

X	1	2	3	4	5	
<i>m</i> (<i>m</i>)	1	1	1	1	1	
p(x)	$\overline{2}$	$\overline{4}$	$\overline{8}$	$\overline{16}$	$\overline{32}$	

Definition 2

Let $X : S \to \mathbb{Z}$ be a discrete RV. The **probability mass function** (pmf) of X is

$$p(x) = P(X = x)$$

Remark Notice that 1. $p(x) \ge 0$ 2. $\sum_{S} p(x) = 1$

When the outcomes of a random experiment have associated nuumerical values the power of arithmetic, calculus, analysis, become available for modelling, inference, prediction, ...

Remark -

Example 4

Toss tow dice and observe the sum.

X	2	3	4	5	6	7	8	9	10	11	12
p(x)	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

Example 5

Pull four cards at random without replacement.

Let X = the number of diamonds.

X	0	1	2	3	4
p(x)	$\frac{{}_{13}C_{0\ 39}C_4}{{}_{52}C_4}\\=0.3038$	$\frac{{}_{13}C_{1\ 39}C_{3}}{{}_{52}C_{4}}\\=0.4388$	$\frac{{}_{13}C_{2\;39}C_2}{{}_{52}C_4}\\=0.2135$	$\frac{{}_{13}C_{3\;39}C_1}{{}_{52}C_4}\\=0.0412$	$\frac{{}_{13}C_{4\;39}C_{0}}{{}_{52}C_{4}}\\=0.0027$

Definition 3

Let X be a discrete random variable. Its **cumulative distribu**tion function (also known as a distribution function) is

$$F(x) = P(X \le x) = \sum_{t \le x} p(t)$$

Example 6

Pull four cards at random without replacement.

Let X = the number of diamonds. The cumulative distribution is

X
0
1
2
3
4

$$F(x)$$
0.3038
0.7426
0.9561
0.9973
1.0000