§9. Hypothesis Testing; Binomial Random Variable

Estimating distribution parameters (e.g. p in Binom ~ (n, p)) is part of statistical inference. Two major branches of statistical inference are:

- Estimation
- Hypothesis Testing

Example 1

A manufacturing process, historically has 20% of its production resulting in defective items. A recent sample of 20 items shows that 6 items must be reworked. Has the manufacturing process changed?

Assume that a production process is binomial with probability for a defective item, p. Our null hypothesis will be that the process has not changed and the alternative that the proportion of defective items has increased.

H_0 :	p = 0.20	(null hypothesis)
$H_1:$	p > 0.20	(alternative hypothesis)

We must decide what sampling results lead to fail to reject H_0 and what results will lead to its rejection and hence the acceptance of H_1 .

The sampling is subject to variability \Rightarrow our conclusions cannot be reached without running the risk of error.

	H_0 True	H_0 False
H_0 Rejected	Type I Error (α)	Correct
H_0 Not Rejected	Correct	Type II Error (β)

Both α and β are conditional probabilities that depend on our selection of the critical region; the set of sample values that will lead to rejection of H_0 . So how should This critical region be chosen? Let's look at an example.

Example: Cont'd

Historical failure rate p = 0.2. Took a sample of n = 20

Let's decide to reject $H_0: p = 0.2$ if 9 or more items are defective out of 20. So the critical region is $\{x \mid x \ge 9\}$. With this choice we have:

$$\alpha = P[x \ge 9 \mid H_o \text{ is True }] = P[x \ge 9 \mid p = 0.2]]$$
$$= \sum_{x=9}^{20} {}_{20}C_x(0.2)^x(0.8)^{20-x}$$
$$= 0.00998179$$
$$\approx 0.01$$

So, with this choice of critical region we will reject H_0 even if H_0 is true ~ 1% of the time. α is called **significance level** of the test. It indicates what Type I error we are willing to tolerate.

To compute β we need specific values for p which invalidates H_0 say p = 0.3. We have:

$$\beta = P[x < 9 \mid p = 0.30] = \sum_{x=0}^{8} {}_{20}C_x(0.3)^x(0.7)^{20-x} = 0.886669$$

This is very high risk (and why we say-fail to reject H_0).

What if our rejection region is $\{x \mid x \ge 8\}$? then

$$\beta = P[x < 8 \mid p = 0.30] = \sum_{x=0}^{7} {}_{20}C_x (0.3)^x (0.7)^{20-x} = 0.772272$$
$$\alpha = P[x \ge 8 \mid p = 0.20] = \sum_{x=8}^{20} {}_{20}C_x (0.2)^x (0.8)^{20-x} = 0.032147$$

 $1 - \beta$ is called the power of the test.

Example: Complete

Historical rate p = 0.20. Took a sample n = 20Found x = 6 defective.

> a. $H_0: p = 0.2, H_1: p > 0.2$ Rejection region $\{x \mid x \ge 9\}$. Sample x = 6

Fail to reject
$$H_0$$
. $\alpha = 0.01$
did not commit $\beta(p_t = 0.3) = 0.88$

b. $H_0: p = 0.2, H_1: p > 0.2$ Rejection region $\{x \mid x \ge 8\}$. Sample x = 6

Fail to reject H_0 . $\alpha = 0.03$ did not commit $\beta(p_t = 0.3) = 0.77$

c. $H_0: p = 0.2, H_1: p > 0.2$ Rejection region $\{x \mid x \ge 6\}$. Sample x = 6

Reject H_0 . Accept $H_1: p > 0.2$

$$\alpha = P[x \ge 6 \mid p = 0.2] = \sum_{x=6}^{20} {}_{20}C_x(0.2)^x(0.8)^{20-x} = 0.195792$$

Type II error - did not commit.

Example 2

Say we would like to test $H_0: p = 0.2$ vs $H_1: p > 0.2$ with $\alpha \approx 0.05$ and $\beta (p_t = 0.3) \approx 0.10$.

What sample size and rejection region do we need? n =?; $\{x \mid x \ge k\}, k$ =?

$$\alpha = \sum_{x=k}^{n} {}_{n}C_{x}(0.20)^{x}(0.80)^{n-x} = 0.05$$
$$\beta = \sum_{x=0}^{k-1} {}_{n}C_{x}(0.30)^{x}(0.70)^{n-x} = 0.10$$

Search with CAS yields $n \approx 156$ and $k \approx 40$.